
Math Modeling, Week 3 
Urns 
Game 1 

A: all red 
B: 50% red, 50% blue 
Draw red. Pr[A]? 

Game 2 
A: 70% red, 30% blue 
B: 30% red, 70% blue 
Draw {3 red, 1 blue}. Pr[A]? 
Draw {10 red, 7 blue}. Pr[A]? 

 
Bayes’ rule 
Hypotheses, data, subjective probability 
Hypothesis equivalent to probability distribution over data 
Posterior µ Prior * Likelihood 
Pr[H|D] = Pr[H] * Pr[D|H] / Pr[D] 
Simple derivation from joint probability, Pr[H,D] 
 Pr[H|D] µ Pr[H,D] 
 
Bernoulli sampling 
x Î {0,1}, Pr[x = 1] = q 
Estimate q Î [0,1] 
Prior density p(q) 
Likelihood 

Pr[x = 1|q] = q (graph) 
Pr[x = 0|q] = 1 – q (graph) 

Posterior density 
 p(q|x) = p(q)×Pr[x|q] / òp(q')Pr[x|q']dq' 
Many observations 
 x = (x1,…xm+n), S(xi=0) = m, S(xi=1) = n 
 Pr(x|q) = (1-q)mqn 
Assume uniform prior, p(q) = 1 
 p(q|x) = (1-q)mqn/ò(1-r)mrndr = (1-q)mqn/B(n,m) 
 Beta function: B(a,b) = G(a+b)/G(a)/G(b) = (a+b-1)!/(a-1)!/(b-1)! 
 Beta distribution: q|x ~ Beta(n+1,m+1) 
Assume arbitrary beta prior, q ~ Beta(a,b) 
 p(q|x) µ (1-q)bqa/B(a,b) × (1-q)mqn µ B(a+n,b+m) 
 simple updating rule: just count 0s and 1s 
 a,b “virtual counts” 
 
Conjugate prior 
Given a parameterized family of likelihoods 
 Bernoulli, q 
 Gaussian, µ 
a conjugate family of distributions 
 Beta, m, n 
 Gaussian, m, s2 

If prior is in conjugate family, posterior is too 
 Conjugate family closed under multiplication by likelihood  

Likelihood viewed as function of parameter being learned (q, µ) 
Efficiency of Bayesian updating 

 
  



Kalman Filter 
Tracking a stochastic process with noisy observation 
Generative model 
 Dynamics: xn = xn-1 + hn 

  hn ~ 𝒩(0,sh2) 
  Gaussian random walk 
 Observation: yn = xn + en 
  en ~ 𝒩(0,se2) 
  Gaussian noise 
 Independence:  ^{hn,en|nÎℕ} 
 Causal graphical model 
Conjugate prior 
 Gaussian likelihood, parameterized by the mean: yn ~ 𝒩(xn, se2) 
 Gaussian prior, parameterized by mean and variance 

xn ~ 𝒩(a,b) 
Posterior  
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 Precision-weighted averaging 
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Iterative prior 
 xn|yn ~ 𝒩(c,d) 
 xn+1|yn = xn + hn ~ 𝒩(c, d+sh2) 
 Convolution: 𝑝 𝛼 + 𝛽 = 𝑋 = ∫ 𝑝 𝛼 = 𝑍 𝑝 𝛽 = 𝑋 − 𝑍 d𝑍 
Update rules 
 xn|yn-1 ~ 𝒩(µn, sn
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Exercises 

1. Change the initial prior in the naive Bernoulli estimator. For example, set it to zero for all p < .5 (and remember to 
normalize). What do you think will happen? Run the model and see, then explain. 
 
2. Extend the Bernoulli learner to ternary observations. (If you like cover stories: You’re training for a roshambo match 
and watching video of your opponent’s past matches to estimate his tendencies.) 
 
a) For binary observations, the latent parameter to be estimated is a single number, q Î [0,1]. How would you characterize 
the thing to be estimated for ternary observations? (Answer before moving on.) 
 
b) There are multiple good answers for part a, but let’s go with this: a vector Q = (q1, q2, q3), constrained to satisfy S(qi) = 
1. The probability of rock is q1, paper q2, and scissors q3. Assume a uniform prior for Q. What’s the posterior after a single 
observation of rock? What’s the posterior after observing k rocks, m papers, and n scissors? You can answer without the 
normalization (using µ), or if you like integrals you can work out the normalization constant. 
 



c) Based on part b, you should be able to tell what the conjugate prior is for a ternary random variable. Try to extend this 
to the conjugate prior for a general n-ary random variable. Write out the distribution (with or without normalization), and 
write out the update rule for how the distribution’s parameters change each time a new observation is made. 
 
The answer to part c is called a Dirichlet distribution. Look it up in Wikipedia (a reliable resource for this sort of thing) 
and compare the expression there for the probability density (PDF) to your answer above. 
 
d) Download http://matt.colorado.edu/teaching/mathmodeling/plotDirichlet.m for making nice pictures of Dirichlet 
distributions in the ternary case. (I drew it as an equilateral triangle, with each vertex corresponding to one of the values of 
the ternary observable variable.) Try different values and make some observations. Try non-integer inputs, including 
values between 0 and 1. Syntax is plotDirichlet(a1,a2,a3). 
 
e) Write some code for a Bayesian learner observing a series of ternary data, using a Dirichlet conjugate prior. The 
structure should be something like this: 
 
Set prior, i.e. parameters a1,a2,a3 for Dirichlet 
Define true generating probabilities for the observable, i.e. q1,q2,q3 with Sq = 1 
Loop through trials 

Sample an observation according to the probabilities in q  [o(i)=find(rand<cumsum(q),1)] 
Update Dirichlet parameters for posterior 

Plot posterior 
 


